На международной конференции по искусственному интеллекту AI Journey («Путешествие в мир искусственного интеллекта») профессор Института вычислительной техники Университета Кампинаса Андерсон Роша и профессор Университета науки и технологий Циндао Дяньхуэй Ван представили своё видение развития ИИ, от глобальных трендов до прикладных задач в промышленности.
Профессор Андерсон Роша в выступлении «ИИ новой эры: от основ к трендам, возможностям и глобальному сотрудничеству» описал современный технологический ландшафт как эпоху конвергенции пяти ключевых технологий: биотехнологий, нанотехнологий, робототехники, интернета вещей и искусственного интеллекта. Он подчеркнул, что ИИ находится в центре этой системы, а его развитие носит экспоненциальный характер. Спикер проиллюстрировал мощь современных технологий примером быстрой разработки вакцины от COVID-19, которая стала возможной благодаря алгоритмам ИИ и генному редактированию.
Особое внимание Андерсон Роша уделил практическому применению ИИ для улучшения качества жизни человека. На примере своей лаборатории он показал, как носимые устройства и алгоритмы машинного обучения позволяют проводить раннюю диагностику болезней, таких как Паркинсон, предсказывать падения у пожилых людей и отслеживать уровень тревожности.
Отдельным вызовом, по мнению спикера, является проблема достоверности информации и синтетической реальности. Он рассказал о проекте «Horus», в рамках которого разрабатываются алгоритмы для борьбы с фейковым контентом и защитой пользователей в цифровом пространстве.
В заключение профессор Андерсон Роша обозначил ключевые тренды на ближайшее будущее: переход к более компактным и эффективным специализированным моделям, развитие мультимодальных систем и агентов, а также необходимость обеспечения безопасности и согласования целей ИИ с человеческими ценностями.
Андерсон Роша, профессор Института вычислительной техники Университета Кампинаса:
«Мы стоим на пороге большой волны конвергенции технологий, где ИИ — это центральная нервная система. Но ключевой вызов — не в том, чтобы сделать машины умнее, а в том, чтобы сделать их безопасными и согласованными с человеческими ценностями. Наша работа с носимыми устройствами, которая позволяет предсказать падение за несколько секунд до того, как оно произойдет, или распознать тревожность с точностью 95% — это лишь первые ласточки той эры, когда ИИ станет настоящим дополненным интеллектом, работающим для человека».
Профессор Дяньхуэй Ван в выступлении «Вопросы, проблем и разработки в области машинного обучения» сосредоточился на прикладных проблемах машинного обучения в промышленности. Он указал на ключевую проблему современных нейросетей — их недостаточную надёжность и нестабильность, вызванную традиционными методами обучения, такими как обратное распространение ошибки. Спикер наглядно продемонстрировал, как классические модели могут давать неудовлетворительные и непредсказуемые результаты, что критично для реальных производственных процессов.
В качестве решения профессор Ван представил сети стохастической конфигурации — легковесные модели, которые обучаются в сотни раз быстрее традиционных аналогов при математически доказанной надёжности. На примерах из горнодобывающей промышленности и производства поликремния он показал, как этот подход позволяет создавать эффективные системы контроля там, где традиционные методы уже не работают.
Профессор Ван выделил основные требования к системам автоматизации следующего поколения: масштабируемость, способность к быстрой адаптации на основе данных в реальном времени и использование легковесных, но мощных моделей, специально разработанных для конкретных промышленных задач.
Дяньхуэй Ван, профессор Университета науки и технологий Циндао:
«Пока все говорят о GPT-4 и больших моделях, в реальной промышленности мы часто не можем позволить себе ждать обучения модели сутки и потреблять энергию целого города. Наш ответ — это легковесные сети стохастической конфигурации, которые решают конкретную производственную задачу с математической гарантией сходимости за 0,3 секунды, а не за день. Будущая конкуренция между странами развернётся не вокруг гигантских LLM, а вокруг создания именно таких эффективных и надёжных моделей для “умных” заводов».








